Neural, Parallel, and Scientific Computations 19 (2011) 229-270 FUNDAMENTAL PROPERTIES OF A TWO-SCALE NETWORK STOCHASTIC HUMAN EPIDEMIC DYNAMIC MODEL
نویسندگان
چکیده
ABSTRACT. The non-uniform global spread of emergent infectious diseases of humans is closely interrelated with the large-scale structure of the human population, and the human mobility process in the population structure. The mobile population becomes the vector for the disease. We present an SIRS stochastic dynamic epidemic process in a two scale structured population. The variability caused by the fluctuating environment is assumed to manifest mainly in the transmission process. We investigate the stochastic asymptotic stability of the disease free equilibrium of the scale structured mobile population, under environmental fluctuations and its impact on the emergence, propagation and resurgence of the disease. The presented results are demonstrated by numerical simulation results.
منابع مشابه
Estimating scour below inverted siphon structures using stochastic and soft computing approaches
This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...
متن کاملNeural, Parallel, and Scientific Computations 19 (2011) 181-196 ROBUST STABILITY OF UNCERTAIN MARKOVIAN JUMPING STOCHASTIC COHEN-GROSSBERG TYPE BAM NEURAL NETWORKS WITH TIME-VARYING DELAYS AND REACTION DIFFUSION TERMS
ABSTRACT. In this paper, the robust exponential stability problem is investigated for a class of uncertain Markovian jumping stochastic Cohen-Grossberg type bidirectional associative memory neural networks (CGBAMNN) with time-varying delays and reaction-diffusion terms. By using the Lyapunov stability theory and linear matrix inequality (LMI) technique, some robust stability conditions guarante...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011